Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads
Author(s)
Kaliouby, Rana El; Cohn, Jeffrey F.; McDuff, Daniel Jonathan; Picard, Rosalind W.
DownloadPicard_Predicting ad.pdf (16.26Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Billions of online video ads are viewed every month. We present a large-scale analysis of facial responses to video content measured over the Internet and their relationship to marketing effectiveness. We collected over 12,000 facial responses from 1,223 people to 170 ads from a range of markets and product categories. The facial responses were automatically coded frame-by-frame. Collection and coding of these 3.7 million frames would not have been feasible with traditional research methods. We show that detected expressions are sparse but that aggregate responses reveal rich emotion trajectories. By modeling the relationship between the facial responses and ad effectiveness, we show that ad liking can be predicted accurately (ROC AUC = 0.85) from webcam facial responses. Furthermore, the prediction of a change in purchase intent is possible (ROC AUC = 0.78). Ad liking is shown by eliciting expressions, particularly positive expressions. Driving purchase intent is more complex than just making viewers smile: peak positive responses that are immediately preceded by a brand appearance are more likely to be effective. The results presented here demonstrate a reliable and generalizable system for predicting ad effectiveness automatically from facial responses without a need to elicit self-report responses from the viewers. In addition we can gain insight into the structure of effective ads.
Date issued
2014-12Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)Journal
IEEE Transactions on Affective Computing
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
McDuff, Daniel, Rana El Kaliouby, Jeffrey F. Cohn, and Rosalind W. Picard. “Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads.” IEEE Transactions on Affective Computing 6, no. 3 (July 1, 2015): 223–235.
Version: Author's final manuscript
ISSN
1949-3045