Show simple item record

dc.contributor.advisorJoAnne Stubbe.en_US
dc.contributor.authorParker, Mackenzie Jamesen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2017-06-06T19:25:08Z
dc.date.available2017-06-06T19:25:08Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/109681
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2017.en_US
dc.descriptionPage 490 blank. Cataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractRibonucleotide reductases (RNRs) catalyze the reduction of nucleotides to 2'-deoxynucleotides in all organisms. Class lb RNRs consist of two subunits: a houses the catalytic and allosteric effector binding sites, and p houses a catalytically essential dimanganic-tyrosyl radical (Mn(III)2-Y*). The allosteric regulation of lb RNR activity has only been studied with the Salmonella enterica enzyme, which exhibits substrate specificity allosteric regulation by ATP and 2'-deoxynucleoside 5'-triphosphates (dNTPs), but not overall activity regulation by ATP and dATP. However, the S. enterica enzyme is not a good general model for Ib RNRs because it is not essential under most growth conditions, including pathogenesis. Other bacteria pathogenic to humans utilize lb RNRs as their sole source of dNTPs for DNA replication and repair. As RNR regulation plays a critical role in the high fidelity of these processes, the allosteric regulation of lb RNRs used as the primary dNTP supplier for a bacterium should be distinct from the S. enterica enzyme and, therefore, could provide a potential target for therapeutic development. Herein, the results of characterizing the allosteric regulation of the Ib RNR from the model organism Bacillus subtilis are presented. To facilitate these studies, we identified, cloned, and isolated the physiological reductant for RNR (thioredoxin/thioredoxin reductase/NADPH), thus allowing us to monitor activity spectrophotometrically. We discovered the effector dATP was a potent inhibitor of enzymatic activity at physiologically relevant concentrations, thereby demonstrating the first example of overall activity allosteric regulation in a class lb system. In other RNRs, overall activity regulation is mediated by a domain called the ATP-cone. This domain is absent from the B. subtilis enzyme; therefore, the inhibition represents a new mechanism of overall activity regulation. Analytical ultracentrifugation studies suggest dATP inhibition may be mediated by formation of large protein complexes. Biophysical studies also led to the discovery of tightly bound dAMP associated with a that increases the susceptibility of RNR to dATP inhibition. The potential physiological importance of dAMP is supported by studies examining YmaB, the unique fourth member of the B. subtilis RNR operon, which revealed this enzyme can hydrolyze dATP into dAMP and pyrophosphate and, therefore, might insert dAMP into a.en_US
dc.description.statementofresponsibilityby Mackenzie James Parker.en_US
dc.format.extent490 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleDiscovery and investigation of the novel overall activity allosteric regulation of the Bacillus subtilis class Ib ribonucleotide reductaseen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc988746188en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record