MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vortex-induced vibrations of a flexible cylinder at large inclination angle

Author(s)
Bourguet, Remi; Triantafyllou, Michael S
Thumbnail
DownloadBourguet_Triantafyllou_PTA2015.pdf (2.548Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity.
Date issued
2014-12
URI
http://hdl.handle.net/1721.1/110660
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Publisher
Royal Society, The
Citation
Bourguet, R., and M. S. Triantafyllou. “Vortex-Induced Vibrations of a Flexible Cylinder at Large Inclination Angle.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2033 (December 15, 2014): 20140108–20140108.
Version: Author's final manuscript
ISSN
1364-503X
1471-2962

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.