MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver

Author(s)
Cauley, Stephen F.; Xi, Yuanzhe; Bilgic, Berkin; Xia, Jianlin; Balakrishnan, Venkataramanan; Setsompop, Kawin; Adalsteinsson, Elfar; Wald, Lawrence; ... Show more Show less
Thumbnail
DownloadFast reconstruction.pdf (773.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Purpose The adoption of multichannel compressed sensing (CS) for clinical magnetic resonance imaging (MRI) hinges on the ability to accurately reconstruct images from an undersampled dataset in a reasonable time frame. When CS is combined with SENSE parallel imaging, reconstruction can be computationally intensive. As an alternative to iterative methods that repetitively evaluate a forward CS+SENSE model, we introduce a technique for the fast computation of a compact inverse model solution. Methods A recently proposed hierarchically semiseparable (HSS) solver is used to compactly represent the inverse of the CS+SENSE encoding matrix to a high level of accuracy. To investigate the computational efficiency of the proposed HSS-Inverse method, we compare reconstruction time with the current state-of-the-art. In vivo 3T brain data at multiple image contrasts, resolutions, acceleration factors, and number of receive channels were used for this comparison. Results The HSS-Inverse method allows for math formula speedup when compared to current state-of-the-art reconstruction methods with the same accuracy. Efficient computational scaling is demonstrated for CS+SENSE with respect to image size. The HSS-Inverse method is also shown to have minimal dependency on the number of parallel imaging channels/acceleration factor. Conclusions The proposed HSS-Inverse method is highly efficient and should enable real-time CS reconstruction on standard MRI vendors' computational hardware.
Date issued
2015-02
URI
http://hdl.handle.net/1721.1/110733
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Magnetic Resonance in Medicine
Publisher
Wiley Blackwell
Citation
Cauley, Stephen F.; Xi, Yuanzhe; Bilgic, Berkin et al. “Fast Reconstruction for Multichannel Compressed Sensing Using a Hierarchically Semiseparable Solver.” Magnetic Resonance in Medicine 73, 3 (March 2014): 1034–1040 © 2014 Wiley Periodicals, Inc
Version: Author's final manuscript
ISSN
0740-3194
1522-2594

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.