dc.contributor.advisor | Wojciech Matusik. | en_US |
dc.contributor.author | Van den Heuvel, Louise E | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2017-08-01T13:14:24Z | |
dc.date.available | 2017-08-01T13:14:24Z | |
dc.date.copyright | 2016 | en_US |
dc.date.issued | 2016 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/110883 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 73-75). | en_US |
dc.description.abstract | The bounds of the design space for 3D-printed objects continue to rapidly extend as the library of printable materials continues to grow. This thesis explores printed objects uniquely enabled by the addition of a magnetic ink to the existing repertoire of materials for the MultiFab printer, a high-resolution, multi-material inkjet 3D printer. Magnetic nanoparticles, a base ink, and a dispersion method are selected to develop the magnetic ink. The ink is optimized for maximal magnetic content and its magnetic properties are characterized. A 9.7 ± 0.8 wt% magnetite ink with expected stability exceeding 10 days is achieved. Design, characterization, and validation of two small-scale multi-material actuators driven by magnetism is performed. The first actuator is a simple fixed cantilever, while the second is a tilting panel. More advanced structures and actuators are explored and are suggestive of an extremely wide scope for potential future applications. The fields of application shown for 3D-printable magnetic ink in a multi-material context range from biomimicry (e.g. stimuli-responsive surfaces) to optics and aerodynamics. | en_US |
dc.description.statementofresponsibility | by Louise E. van den Heuvel. | en_US |
dc.format.extent | 75 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Toward functional magnetic applications for multi-material inkjet 3D printing | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 994207702 | en_US |