Show simple item record

dc.contributor.authorMarinan, A. D.
dc.contributor.authorCahoy, K. L.
dc.contributor.authorBishop, R. L.
dc.contributor.authorLui, S. S.
dc.contributor.authorBardeen, J. R.
dc.contributor.authorMulligan, T.
dc.contributor.authorBlackwell, W. J.
dc.contributor.authorLeslie, R. V.
dc.contributor.authorOsaretin, I. A.
dc.contributor.authorShields, M.
dc.date.accessioned2017-08-15T18:37:46Z
dc.date.available2017-08-15T18:37:46Z
dc.date.issued2016-12
dc.identifier.issn1939-1404
dc.identifier.urihttp://hdl.handle.net/1721.1/110956
dc.description.abstractThe microwave radiometer technology acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office. The science payload on MiRaTA consists of a triband microwave radiometer and global positioning system (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the compact total electron content and atmospheric GPS sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (~20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPSRO: 1) new ultracompact and low-power technology for multichannel and multiband passive microwave radiometers, 2) the application of a commercial off-the-shelf GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and 3) a new approach to space-borne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective 3, developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.en_US
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectatmospheric humidityen_US
dc.subjectatmospheric pressureen_US
dc.subjectatmospheric temperatureen_US
dc.subjectcalibrationen_US
dc.subjectcloudsen_US
dc.subjectGlobal Positioning Systemen_US
dc.subjecticeen_US
dc.subjectionosphereen_US
dc.subjectradiometersen_US
dc.subjectremote sensingen_US
dc.subjectstratosphereen_US
dc.subjecttotal electron content (atmosphere)en_US
dc.subjecttroposphereen_US
dc.titleAssessment of Radiometer Calibration With GPS Radio Occultation for the MiRaTA CubeSat Missionen_US
dc.typeArticleen_US
dc.identifier.citationMarinan, A., Cahoy, K., Bishop, R., Lui, S., Bardeen, J., Mulligan, T., & ... Shields, M. (2016). Assessment of Radiometer Calibration With GPS Radio Occultation for the MiRaTA CubeSat Mission. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 9(12), 5703-5714. doi:10.1109/JSTARS.2016.2598798en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record