Show simple item record

dc.contributor.advisorAntoine Allanore.en_US
dc.contributor.authorCann, Jaclyn Len_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2017-09-15T14:20:08Z
dc.date.available2017-09-15T14:20:08Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111225
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 91-93).en_US
dc.description.abstractElectrolysis of molten copper (I) sulfide (Cu2S) in a sulfide-based electrolyte is being investigated for use as a direct path for copper extraction to replace the conventional process of smelting and electrorefining [1]. The allure of an electrolysis process for metals extraction can be enhanced by increasing its faradaic efficiency, through, for example, decreasing the electronic transference number of the electrolyte. This thesis compares two methods of determining the electronic transference number in Cu2S - barium sulfide (BaS) electrolytes to determine whether one or both methods are wellsuited for use with these high-temperature electrolytes. The first method is a stepped potential chronoamperometry method, in which the electronic transference number is determined from the decay of the current after a voltage step. The second method is a faradaic efficiency method, where the ionic transference number is determined from the efficiency with which ions can be transported from one electrode to the other. The stepped potential chronoamperometry method estimates electronic transference numbers between 0.73 and 0.85, while the faradaic efficiency method estimates values between 0.12 and 0.34 for the same electrolyte. Three differences between the experiments are investigated: (1) the work functions of the electrodes used, (2) the additional alloying driving force in faradaic efficiency experiments, and (3) the tin impurities in the electrolyte. This analysis suggests that the difference between the work function of the electrode and the electron affinity of the electrolyte may be the dominant cause of the experimental discrepancy. Therefore, it is suggested that electrodes and electrolytes be chosen to maximize this difference to enhance the faradaic efficiency of copper extraction from Cu2S. The underlying physics of semiconductiviy in molten sulfides, however, remains unclear. Future study of the electronic structure and short range ordering of molten metal sulfides to better understand and predict electronic properties is needed.en_US
dc.description.statementofresponsibilityby Jaclyn L. Cann.en_US
dc.format.extent93 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleMethodology for determining electronic transference numbers in molten sulfide meltsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1003283962en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record