MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular organization of the actin cortex in apical constriction and epithelial folding

Author(s)
Coravos, Jonathan S. (Jonathan Stuck)
Thumbnail
DownloadFull printable version (31.70Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Adam C. Martin.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Actin and myosin generate contractile forces to change tissue and cell shape. These shape changes are essential for many biological functions, ranging from muscle contraction to tissue morphogenesis in development. While the spatial organization and composition of the actin and myosin contractile force generating machine is well known in muscle, it is less understood in nonmuscle epithelia, which change shape during development and form functional barriers on an organism's inner surfaces. Prevailing models for nonmuscle contractility suggest that the intrinsic ability of mixed polarity actin networks and uniformly distributed myosin to contract into asters drives nonmuscle contractility. Here, I provide insight into the mechanism of nonmuscle contraction by demonstrating that the apical actin cortex and associated proteins are spatially organized in epithelia. In addition, I demonstrate that this spatial organization forms a sarcomere-like actomyosin apparatus, which is essential for epithelial contractility. This updated model is likely to inform our understanding of a wide range of contractile force-generating systems, and may lead to advances in understanding of pathologies that involve defects in contractility, like cardiovascular disease and pulmonary fibrosis.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 120-139).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111230
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.