Show simple item record

dc.contributor.advisorPolina Anikeeva.en_US
dc.contributor.authorCanales, Andrésen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2017-09-15T15:28:48Z
dc.date.available2017-09-15T15:28:48Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111316
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 127-147).en_US
dc.description.abstractThe treatment of neurodegenerative and neurological conditions relies on better understanding the system that they afflict. However, the tools currently available to probe neural circuits are often limited to use in short-term studies primarily due to poor of biocompatibility. To address this challenge, flexible, minimally invasive neural probes were fabricated using a thermal drawing process, with polymers serving as their main structural constituent. Through the use of different polymers, probes containing arrays of tin electrodes as small as 5 [mu]m were fabricated, as were probes combining capabilities for electrical recording, optical stimulation, and drug delivery. A technique was developed to combine functionalities of these devices into a single probe to study the effect of optical stimulation with different waveforms on the brain activity. To break the longitudinal symmetry inherent to probes fabricated using the thermal drawing process, and to allow the incorporation of functionalities along the probe length, a method to combine thermal drawing with a method commonly used to fabricate neural probes, photolithography, was developed, along with the selection of the polymer that would allow consecutive processing using these two techniques. All of the fabricated probes were characterized and tested in vivo by implantation into mice and assessing their functionality. High signal-to-noise ratio (13±6) recordings were obtained using multielectrode arrays. Recordings of neural activity during simultaneous optical stimulation and drug delivery were performed with multifunctional probes. Hybrid probes combining metal electrodes with a polymer waveguide were used to study the response of large groups of neurons to different forms of optical stimuli. Most importantly, the biocompatibility of these probes was assessed over a 3 month period and compared favorably to that of steel microwires of similar size.en_US
dc.description.statementofresponsibilityby Andrés Canales.en_US
dc.format.extent149 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleDevelopment of neural probes using thermal drawingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1003289790en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record