MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of print orientation on mechanical material behavior in fused deposition modeling 3-D printing

Author(s)
Fang, Frank Yuxing
Thumbnail
DownloadFull printable version (18.45Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Caitlin T. Mueller.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Additive manufacturing, also known as 3-D printing, has in recent years experienced a meteoric rise in relevance and application that has seen the technology be used in wide range of industries, from aerospace to construction to healthcare. However, many of the methods used for 3-D printing, such as Fused Deposition Modeling (FDM), are layer-based processes, resulting in anisotropic material behavior of the printed object. Thus, the print orientation of the object is a crucial factor in its mechanical properties, such as strength and elastic modulus. While anisotropy in 3-D printing has been extensively studied, a gap in current research exists because previous literature only considered different orthogonal configurations of specimen orientation. This thesis investigates the effect of print orientation on the tensile mechanical material properties of FDM printed test specimens in finer detail. By analyzing many print orientations in between the orthogonal configurations, this project seeks to develop a better, higher resolution understanding of anisotropic behavior that could inform engineers and designers about how to account for anisotropy in their prints.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 59-62).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111505
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.