Show simple item record

dc.contributor.advisorGordana Herning and John A. Ochsendorf.en_US
dc.contributor.authorKim, Harry, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2017-09-15T15:37:30Z
dc.date.available2017-09-15T15:37:30Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111513
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 65-66).en_US
dc.description.abstractA spoke wheel roof system consists of tension rings, compression rings, and radial spokes and resists loads mainly through axial forces. Due to its light weight and ability to achieve a column-free, long span, it has been a popular solution to structures such as stadia since its first use in 1960s. However, there has been lack of information on the performance of a spoke wheel roof system depending on its geometry. This thesis explores the history and general behaviors of a spoke wheel roof system. A representative model is created and tested in Rhino-Grasshopper-Karamba, and the geometric variations to the structure and their influence are evaluated. Configuration of the rings, inner and outer ring radii, aspect ratios of the rings, spoke spacing and slope are chosen to be variables, and load path is used as an evaluation criterion for structural performance or efficiency. Results show that the choice between different ring configurations depends on architectural needs and climate conditions. Assuming that minimal load path implies high structural performance, roof span and size are inversely related to the structural performance. They have a greater influence than the aspect ratios of the rings. Smaller spacing and larger slope of the spokes lead to a more efficient structure.en_US
dc.description.statementofresponsibilityby Harry Kim.en_US
dc.format.extent66 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleStructural performance of spoke wheel roof systemsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc1003324233en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record