MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-channel predictive analytics for retail distribution decisions

Author(s)
Coles, James B
Thumbnail
DownloadFull printable version (7.640Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
Georgia Perakis and Bruce Cameron.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Distribution demand forecasting at Zara currently considers historical sales of products modified by expert knowledge inputs in an algorithm developed to calculate the shipment required to meet demand for the next sales period. In 2010, the introduction of Zara.com provided customers an additional channel to complete purchases and interact with the brand while providing Zara significant insight into changing customer preferences to supplement the expert knowledge of the Zara team. This thesis investigates the utility of the data collected in the online sales channel for increasing the accuracy of the distribution demand forecasts. Two forecast types are considered: Initial Shipments for which no historical data exists, and Replenishment Shipments which have historical data. Forecasts are performed for both brick-and-mortar and e-commerce sales channels to demonstrate cross-channel utility of the data. The study presents a review of available datasets to identify those of potential interest and describes meaningful features engineered from raw datasets. By applying machine learning algorithms, significant features are identified and a predictive model is developed demonstrating significant WMAPE improvement for initial shipments to brick-and-mortar stores ( 0.23), moderate improvement for replenishment shipments to e-commerce ( 0.05) and limited improvement for replenishments to brick-and-mortar stores (<0.04). The results of this study demonstrate the potential for significant reduction of inventory requirements to maintain customer service levels and provides a baseline for future cross-channel forecasting work.
Description
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2017.
 
Thesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, in conjunction with the Leaders for Global Operations Program at MIT, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 91-93).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111531
Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Engineering Systems Division; Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Institute for Data, Systems, and Society., Engineering Systems Division., Leaders for Global Operations Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.