Show simple item record

dc.contributor.advisorE. Eric Adams.en_US
dc.contributor.authorYu, Kwun Loken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2017-09-15T15:38:25Z
dc.date.available2017-09-15T15:38:25Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111534
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 67-68).en_US
dc.description.abstractSubsurface intakes and disposal systems are gaining interest for seawater desalination in comparison with the older open ocean intake/discharge systems that induce many environmental problems. Facilities using reverse-osmosis technology to desalinate seawater require stringent feed water quality to operate efficiently, and are particularly prone to membrane fouling when contaminants enter the system. Subsurface systems leverage coastal aquifers as natural filters, increasing the effective flow field for seawater extraction and brine disposal, and are proven to reduce impacts on the coastal environment. In this study, we developed groundwater models in SEAWAT, a three-dimensional finite difference groundwater model capable of simulating a varying-density environment, to learn about the interactions of seawater, brackish water, freshwater and brine due to extraction and injection activities, with salinities ranging from 0-70 PSU, and densities ranging from 10009/L to 10509/L. Two hypothetical desalination plants with freshwater production rates adequate to supply 750 people and 7500 people were simulated. Using simplified cross-sectional two-dimensional models, an optimal offshore location can be identified to implement subsurface intake systems to extract seawater closest to the coastline while minimizing impacts on existing freshwater storage from seawater intrusion. Models have also shown that for the same desalination plants, the coastal aquifer is more tolerant of brine injection than feedwater extraction; given that desalination plants typically have a 50% efficiency, half of the extracted seawater becomes freshwater, and only the remaining wasted brine is injected into the aquifer. A 2D test model with an expanded longshore domain, as well as a 3D test model with non-uniform properties in the longshore direction were also developed to test sensitivity when the longshore domain is changed.en_US
dc.description.statementofresponsibilityby Kwun Lok Yu.en_US
dc.format.extent68 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleModeling injection and extraction wells for seawater desalination in SEAWATen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc1003324546en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record