MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical conversion of a fluorinated greenhouse gas using a lithium battery configuration

Author(s)
Li, Yuanda
Thumbnail
DownloadFull printable version (8.034Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Betar M. Gallant.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The demand for technological advancement of greenhouse gas conversion and mitigation strategies is ever increasing. In this thesis, a non-aqueous electrochemical platform with metal lithium (Li) as the anode and carbon as the cathode has been developed to convert the most potent greenhouse gas, sulfur hexafluoride (SF 6), into benign solids Li2S and LiF under room temperature conditions at an electrode - electrolyte interface. Galvanostatic discharge demonstrated that the reaction between Li and SF 6 is capable of delivering modest cell voltages up to - 2.4 V vs. Li/Lie and capacities up to ~3800 mAh/gc. The electrochemical reaction between Li and SF6 in two different battery solvents has been characterized with a suite of solid and liquid phase analyses, which showed the reaction to be an 8 - electron transfer process with high Coulombic efficiency. Rotating disk electrode studies were also employed to demonstrate that the overpotential of this system is intrinsically governed by kinetics. This work demonstrates a non-aqueous system capable of both reducing a fluorinated gas, SF6 under room temperature conditions at an electrode surface, and acting as a primary battery based on halogen ligand chemistry.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 57-60).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111724
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.