MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trace element proxies and mineral indicators of hydrothermal fluid composition and seafloor massive sulfide deposit formation processes

Author(s)
Evans, Guy Nathaniel
Thumbnail
DownloadFull printable version (40.83Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Margaret K. Tivey.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis analyzes compositions of seafloor massive sulfide (SMS) deposits and related hydrothermal vent fluids to identify proxies of reaction zone conditions (host-rock lithology, hydrothermal fluid temperature and chemistry). Chapter 2 investigates the morphology, mineralogy, and geochemistry of SMS deposits from six vent fields along the Eastern Lau Spreading Center (ELSC), demonstrating that ELSC SMS deposits record differences in hydrothermal fluid temperature, pH, sulfur fugacity and host-rock lithology related to proximity to the nearby Tonga Subduction Zone. Chapters 3 and 4 focus on partitioning of Co, Ni, Ga, Ag, and In between hydrothermal vent fluids and chalcopyrite lining fluid conduits in black smoker chimneys. Chapter 3 develops secondary ion mass spectrometry (SIMS) as a technique to measure Co, Ni, Ga, Ag, and In in chalcopyrite and identifies a correlation between Ga and In in chalcopyrite and hydrothermal fluid pH. Chapter 4 presents new data on these elements in ELSC hydrothermal fluids that, combined with SIMS analyses of chalcopyrite chimney linings and previously published data on vent fluids from the Manus Basin, provide evidence that supports partitioning of Ag a lattice substitution for Cu. Together, concentrations of Ga, In, and Ag in chalcopyrite provide proxies of hydrothermal fluid pH and metal (i.e., Ag and Cu) contents.
Description
Thesis: Ph. D. in Marine Geology, Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111731
Department
Joint Program in Marine Geology and Geophysics; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Marine Geology and Geophysics., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.