Show simple item record

dc.contributor.advisorGang Chen.en_US
dc.contributor.authorMendoza, Jonathan Michaelen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2017-10-04T15:06:10Z
dc.date.available2017-10-04T15:06:10Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111737
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 145-161).en_US
dc.description.abstractIn semiconductor devices, thermal energy is carried by phonons, the quantized excitation of atomic vibrations. These phonons scatter with impurities, electrons, grain boundaries, and other phonons. At a sufficiently large scale, phonon dynamics can be approximated as a Brownian random walk, leading to ordinary diffusion described by the heat equation. However, such approximations fail at the scale of the phonon mean free path. In this regime, a proper wave description encoding phonon scattering is required. For sufficiently short thermal systems, the thermal conductivity becomes extrinsic and exhibits linear scaling with system size. This scale is known as the ballistic transport regime. As the system size grows beyond this scale, the thermal conductivity asymptotes into the intrinsic, ordinary diffusive regime. However, there are special circumstances where this transition does not occur. In this Thesis, we demonstrate the anomalous scaling of thermal conductivity. The source of this anomaly is the Anderson localization of thermal phonons. Anderson localization is the spatial trapping of waves due to extreme levels of elastic disorder. The hallmark of Anderson localization is an exponential decay law of conductance with increasing system size. Since thermal transport is a broadband process, this exponential suppression leads to a thermal conductivity maximum as a function of system size. Our numerical study of GaAs/AlAs superlattices with ErAs nanoparticles exhibits this thermal conductivity maximum, yielding quantitative agreement to experiments. We then generalize our elastic model to allow for the incorporation of finite-temperature effects. The inclusion of phonon-phonon scattering decoheres phonons, resulting in phonon delocalization. Counterintuitively, the additional inelastic scattering increases conductance for originally localized phonons. This localization to diffusive transition as a function of temperature is captured in our model at low temperatures (~20K).en_US
dc.description.statementofresponsibilityby Jonathan M. Mendoza.en_US
dc.format.extent161 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAnderson localization of thermal phonons : anomalous heat conduction in disordered superlatticesen_US
dc.title.alternativeAnomalous heat conduction in disordered superlatticesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1004377162en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record