Show simple item record

dc.contributor.advisorMing Guo.en_US
dc.contributor.authorGupta, Satish Kumar, Ph.D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2017-10-04T15:07:10Z
dc.date.available2017-10-04T15:07:10Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111758
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 53-58).en_US
dc.description.abstractPassive microrheology, a method of calculating the frequency dependent complex moduli of a viscoelastic material has been widely accepted for systems at thermal equilibrium. However, cytoplasm of a living cell operates far from equilibrium and thus, the applicability of passive microrheology in living cells is often questioned. Active microrheology methods have been successfully used to measure mechanics of living cells however, they involve complicated experimentation and are highly invasive as they rely on application of an external force. In the first part of this thesis, we propose a high throughput, non-invasive method of extracting the mechanics of the cytoplasm using the fluctuations of tracer particles. Using experimental and theoretical analysis, we demonstrate that the cytoplasm of a living mammalian cell behaves as an equilibrium material at short time scales. This allows us to extract high frequency mechanics of the cytoplasm using the generalized Stokes-Einstein relationship. The results obtained are in excellent agreement with our independent optical tweezer measurements in this equilibrium regime. Studies often assume cytoplasm as an isotropic material. However, under various physiological processes such as migration, blood flow on endothelial cells, it can undergo morphological changes which can induce significant redistribution of the cytoskeleton. Evidence of induced anisotropy for cells under mechanical stimuli exists however, the role of cytoskeletal restructuring on mechanical anisotropy remains unclear. Moreover, the effect of this restructuring on intracellular dynamics and forces remains elusive. In the second part of this thesis, we confine the cells in different aspect ratio and measure the mechanics of the cytoplasm using optical tweezers in both longitudinal and transverse directions to quantify the degree of mechanical anisotropy. These active microrheology measurements are later combined with independent intracellular motion measurements to calculate the intracellular force spectrum using Force Spectrum Microscopy (FSM); from which the degree of anisotropy in dynamics and forces are quantified.en_US
dc.description.statementofresponsibilityby Satish Kumar Gupta.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleMechanics and dynamics of living mammalian cytoplasmen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1004850057en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record