MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lower bounds on the classical simulation of quantum circuits for quantum supremacy

Author(s)
Dalzell, Alexander M
Thumbnail
DownloadFull printable version (722.3Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Aram W. Harrow.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Despite continued experimental progress, no task has yet been performed on quantum technology that could not also have been performed quickly on today's classical computers. One proposed path toward achieving this milestone, which is often referred to as quantum supremacy, is to perform specific types of quantum circuits for which it is guaranteed, under plausible complexity theoretic conjectures, that any classical approximate weak simulation algorithm for these circuits must take more than polynomial time. Instantaneous quantum (IQP) circuits and Quantum Approximate Optimization Algorithm (QAOA) circuits are examples of circuits with this guarantee under the assumption that the polynomial hierarchy (PH) does not collapse. However, these arguments do not communicate how large these quantum circuits must be built before simulating them is hard in practice. We show how a fine-grained version of this assumption involving the PH leads to a fine-grained lower bound on the simulation time for IQP and QAOA circuits. Using the lower bound, we conclude that IQP circuits must contain roughly 1700 qubits, and QAOA circuits must contain roughly 7100 qubits before their simulation would be guaranteed to be intractable on today's fastest supercomputers. Additionally, we apply the same logic to find an asymptotic lower bound on the classical weak simulation of Clifford + T circuits with n qubits, m Clifford gates, and t T gates, concluding that any simulation with runtime of the form poly(n;m)2[gamma]t must have [gamma] > 1/135 [approximately equal] 0:0074. The best existing algorithm of this form [gamma] [approximately equal] 0:228.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 91-93).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111859
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.