MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AdaptDB : adaptive partitioning for distributed joins

Author(s)
Lu, Yi, (Ph. D. in Computer Science) Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (588.0Kb)
Alternative title
Adaptive partitioning for distributed joins
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel R. Madden.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Big data analytics often involves complex join queries over two or more tables. Such join processing is expensive in a distributed setting both because large amounts of data must be read from disk, and because of data shuffling across the network. Many techniques based on data partitioning have been proposed to reduce the amount of data that must be accessed, often focusing on finding the best partitioning scheme for a particular workload, rather than adapting to changes in the workload over time. In this thesis, we present AdaptDB, an adaptive storage manager for analytical database workloads in a distributed setting. It works by partitioning datasets across a cluster and incrementally refining data partitioning as queries are run. AdaptDB introduces a novel hyper-join that avoids expensive data shuffling by identifying storage blocks of the joining tables that overlap on the join attribute, and only joining those blocks. Hyper-join performs well when each block in one table overlaps with few blocks in the other table, since that will minimize the number of blocks that have to be accessed. To minimize the number of overlapping blocks for common join queries, AdaptDB users smooth repartitioning to repartition small portions of the tables on join attributes as queries run. A prototype of AdaptDB running on top of Spark improves query performance by 2-3x on TPC-H as well as real-world dataset, versus a system that employs scans and shuffle-joins.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 57-59).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/111869
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.