Show simple item record

dc.contributor.advisorMichael R. Benjamin and John J. Leonard.en_US
dc.contributor.authorLeavitt, Joseph Williamen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-10-18T15:08:54Z
dc.date.available2017-10-18T15:08:54Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111893
dc.descriptionThesis: Nav. E., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 259-278).en_US
dc.description.abstractApplications of autonomous marine vehicles in dynamic and uncertain environments continuously grow as research unveils new enabling technology and academic, commercial, and government entities pursue new marine autonomy concepts. The safe operation of these vehicles in the marine domain, which is currently dominated by human-operated vehicles, demands compliance with collision avoidance protocol, namely the International Regulations for Preventing Collisions at Sea (COLREGS). Strict application of this protocol can lead to a highly constrained motion planning problem, in which it is difficult for a vehicle to identify a safe and efficient motion plan. This thesis proposes a multi-objective optimization-based method for COLREGS-compliant autonomous surface vehicle collision avoidance in which vehicles use shared intent information, in addition to vehicle state information, to identify safe and efficient collision avoidance maneuvers. The proposed method uses intent information to relax certain COLREGS-specified constraints with the goal of providing sufficient maneuvering flexibility to enable improvements in safety and efficiency over a non-intent-aware system. In order to arrive at an intent-aware solution, this thesis explores the concept of intent, including intent formulations for the marine domain, intent communications, and the application of intent to the COLREGS-compliant motion planning problem. Two types of intent information are specifically evaluated: COLREGS mode intent, in which the give-way vessel in an overtaking or crossing scenario communicates its intent to maneuver in a certain direction with respect the stand-on vessel, and discrete trajectory intent in which vehicles communicate projected future positions. Simulations and on-water experiments demonstrate the feasibility of the proposed intent-aware method, as well as improvements in performance, in terms of both vehicle safety and mission efficiency, over a non-intent-aware, COLREGS-compliant collision avoidance method.en_US
dc.description.statementofresponsibilityby Joseph William Leavitt.en_US
dc.format.extent278 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIntent-aware collision avoidance for autonomous marine vehiclesen_US
dc.typeThesisen_US
dc.description.degreeNav. E.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1005079450en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record