Show simple item record

dc.contributor.advisorPeter Szolovits.en_US
dc.contributor.authorLee, Ji Young, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-10-18T15:09:25Z
dc.date.available2017-10-18T15:09:25Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111905
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 85-97).en_US
dc.description.abstractElectronic health records (EHRs) have been widely adopted, and are a gold mine for clinical research. However, EHRs, especially their text components, remain largely unexplored due to the fact that they must be de-identified prior to any medical investigation. Existing systems for de-identification rely on manual rules or features, which are time-consuming to develop and fine-tune for new datasets. In this thesis, we propose the first de-identification system based on artificial neural networks (ANNs), which achieves state-of-the-art results without any human-engineered features. The ANN architecture is extended to incorporate features, further improving the de-identification performance. Under practical considerations, we explore transfer learning to take advantage of large annotated dataset to improve the performance on datasets with limited number of annotations. The ANN-based system is publicly released as an easy-to-use software package for general purpose named-entity recognition as well as de-identification. Finally, we present an ANN architecture for relation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).en_US
dc.description.statementofresponsibilityby Ji Young Lee.en_US
dc.format.extent97 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleInformation extraction with neural networksen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1005139501en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record