dc.contributor.advisor | Peter Szolovits. | en_US |
dc.contributor.author | Lee, Ji Young, Ph. D. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2017-10-18T15:09:25Z | |
dc.date.available | 2017-10-18T15:09:25Z | |
dc.date.copyright | 2017 | en_US |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/111905 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 85-97). | en_US |
dc.description.abstract | Electronic health records (EHRs) have been widely adopted, and are a gold mine for clinical research. However, EHRs, especially their text components, remain largely unexplored due to the fact that they must be de-identified prior to any medical investigation. Existing systems for de-identification rely on manual rules or features, which are time-consuming to develop and fine-tune for new datasets. In this thesis, we propose the first de-identification system based on artificial neural networks (ANNs), which achieves state-of-the-art results without any human-engineered features. The ANN architecture is extended to incorporate features, further improving the de-identification performance. Under practical considerations, we explore transfer learning to take advantage of large annotated dataset to improve the performance on datasets with limited number of annotations. The ANN-based system is publicly released as an easy-to-use software package for general purpose named-entity recognition as well as de-identification. Finally, we present an ANN architecture for relation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C). | en_US |
dc.description.statementofresponsibility | by Ji Young Lee. | en_US |
dc.format.extent | 97 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Information extraction with neural networks | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 1005139501 | en_US |