Show simple item record

dc.contributor.advisorMarc A. Baldo.en_US
dc.contributor.authorFinley, Joseph T. (Joseph Tyler)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-10-18T15:09:46Z
dc.date.available2017-10-18T15:09:46Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/111913
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 51-54).en_US
dc.description.abstractSpintronic devices promise to be an energy efficient alternative to complementary metal oxide semiconductor devices for logic and memory. However, in order to be more competitive, further reductions in switching energy and switching speed are needed. Recently, there has been interest in using antiferromagnetically coupled materials instead of ferromagnetic materials to store information. Compared with ferromagnetic materials, antiferromagnetically coupled systems exhibit faster dynamics and are more stable against external magnetic field perturbations, which could potentially enable spintronic devices with higher speed and density. Despite the potential advantages of information storage in antiferromagnetically coupled materials, it remains uncertain whether one can efficiently control the magnetic state because of the cancelled net magnetic moment. This thesis reports spin-orbit torque induced magnetization switching of ferrimagnetic Co₁-xTbx thin films with perpendicular magnetic anisotropy. By varying the relative concentrations of the two atomic species, one can reach compensation points where the net magnetic moment or angular momentum goes to zero. We demonstrate current induced switching in all of the studied film compositions, including those near the magnetization compensation point. We then quantify the spin-orbit torque induced effective field, where we find that close to the compensation point, there is a divergent behavior that scales with the inverse of the magnetization, consistent with angular momentum conservation. The large effective spin-orbit torque, previously demonstrated fast dynamics, and small net magnetization in these ferrimagnetic systems promise spintronic devices that are faster and more scalable than traditional ferromagnetic systems.en_US
dc.description.statementofresponsibilityby Joseph T. Finley.en_US
dc.format.extent54 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSpin-orbit torque switching of compensated ferrimagnetic cobalt-terbium alloysen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1005261005en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record