Show simple item record

dc.contributor.advisorSenthil Todadri.en_US
dc.contributor.authorPretko, Michaelen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2017-10-30T15:30:13Z
dc.date.available2017-10-30T15:30:13Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112071
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 139-143).en_US
dc.description.abstractMany quantum phases of matter, such as quantum spin liquids and fractional quantum hall systems, are well-described in the language of gauge theory. Until recently, most theoretical attention has been focused on systems described by familiar vector gauge theories. In this thesis, we will explore the properties of quantum phases described by higher rank tensor gauge theories. In particular, symmetric tensor gauge theories describe stable phases of matter in three dimensions. We will demonstrate that these theories lead to an exotic new class of particles which are restricted to move only in lower-dimensional subspaces, instead of being able to freely propagate in three dimensions. We call these excitations "subdimensional particles." As a special case, some models feature 0-dimensional particles, or "fractons," which are totally immobile. Subdimensional particles couple naturally to tensor electric and magnetic fields, in a form of generalized electromagnetism. We will establish the basic theoretical principles of this new tensor electromagnetism, including its Maxwell equations, force laws, and electrostatic properties. Finally, as a special case of the higher rank formalism, we will study a rank 2 phase featuring a gravity-like low-energy theory. We will show how to reconcile the restricted mobility of tensor gauge theories with the expected properties of a gravitational theory. Our toy models will thereby offer clues which may be useful for understanding more realistic gravitational theories.en_US
dc.description.statementofresponsibilityby Michael Pretko.en_US
dc.format.extent143 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleSubdimensional particles and higher rank quantum phases of matteren_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc1006739007en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record