Show simple item record

dc.contributor.advisorMichael Short.en_US
dc.contributor.authorAuguste, Rasheeden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2017-12-05T16:25:14Z
dc.date.available2017-12-05T16:25:14Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112377
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 418-420).en_US
dc.description.abstractCRUD (Chalk River Unidentified Deposits) is buildup of metal oxides on the interior of nuclear reactors. This is caused by corrosion in reactor internals, leading to problems such as coolant contamination in porous deposits left by CRUD. CRUD has forced many nuclear reactors into temporary shutdown or production downgrades, costing millions of dollars US per reactor. If the CRUD growth factors could be fully understood, they could be controlled, and the CRUD problem could be eliminated altogether. Atomic force microscopy can be used to measure the force, or the strength of the CRUD-clad bond with different materials. This research focuses on answering this question: How does the force change between CRUD particles and different materials that could be used for reactor cladding? This study will analyze lab-grown CRUD samples on different substrate materials and characterize CRUD growth on each. It was found the CRUD-bond forces (from least to greatest) on silicon carbide (SiC), Titanium aluminum carbide (Ti2AlC), and max-phase zirconium alloy 211(Zr4M211) behaved similarly in air and in water. The forces on each surface increased with increasing dwell time for the Fe3O4 particle AFM tip; in contrast, most adhesion forces stayed constant with the NiO AFM tip. Furthermore, these CRUD forces were compared to other non-accident tolerant fuels, and there are cases in which non-ATF materials show more CRUD resistance (less adhesive force) than ATF-materials. This study's analysis could be applied to other materials to be used for reactor cladding. Once the material with the lowest-strength CRUD bond is identified and installed, the nuclear industry could save millions of dollars US per reactor fuel cycle.en_US
dc.description.statementofresponsibilityby Rasheed Auguste.en_US
dc.format.extent420 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleQuantifying the fouling resistance of Accident-Tolerant Fuel (ATF) cladding coatings with force spectroscopyen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc1011422688en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record