MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of reassortant influenza viruses at scale : algorithm and applications

Author(s)
Ma, Eric J. (Eric Jinglong)
Thumbnail
DownloadFull printable version (15.35Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biological Engineering.
Advisor
Jonathan A. Runstadler.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Reassortment is a reticulate evolutionary process that results in genome shuffling; the most prominent virus known to reassort is the influenza A virus. Methods to identify reassortant influenza viruses do not scale well beyond hundreds of isolates at a time, because they rely on phylogenetic reconstruction, a computationally expensive method. This thus hampers our ability to test systematically whether reassortment is associated with host switching events. In this thesis, I use phylogenetic heuristics to develop a new reassortment detection algorithm capable of finding reassortant viruses in tens of thousands viral isolates. Together with colleagues, we then use the algorithm to test whether reassortment events are over-represented in host switching events and whether reassortment is an alternative 'transmission strategy' for viral persistence.
Description
Thesis: Sc. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 75-83).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/112387
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.