Show simple item record

dc.contributor.advisorPeter Szolovits.en_US
dc.contributor.authorGhassemi, Marzyehen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-12-05T16:25:47Z
dc.date.available2017-12-05T16:25:47Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112389
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 99-108).en_US
dc.description.abstractThere are major practical and technical barriers to understanding human health, and therefore a need for methods that thrive on large, complex, noisy data. In this work, we present machine learning methods that distill large amounts of heterogeneous health data into latent state representations. These representations are then used to estimate risks of poor outcomes, and response to intervention in multivariate physiological signals. We evaluate the reduced latent representations by 1) establishing their predictive value in important clinical tasks and 2) showing that the latent space representations themselves provide useful insight into underlying systems. In particular, we focus on case studies that can provide evidence-based risk assessment and forecasting in settings with guidelines that have not traditionally been data-driven. In this thesis we evaluate several methods to create patient representations, and use these features to predict important outcomes. Representation learning can be thought of as a form of phenotype discovery, where we attempt to discover spaces in the new representation that are markers of important events. We argue that these latent representations are useful markers when they 1) create better prediction results on outcomes of interest, and 2) do not duplicate features that are currently known bio-markers. We present four case studies of learning representations, and evaluate the representations on real predictive tasks. First, we create forward-facing prediction models using baseline clinical features, and those from a Latent Dirichlet Allocation (LDA) model trained with clinical progress notes. We then evaluate the per-patient latent state membership to predict mortality in an intensive care setting as time moves forward. Second, we use non-parametric Multi-task Gaussian Process (MTGP) hyper-parameters as latent features to estimate correlations within and between signals in sparse, heterogeneous time series data. We evaluate the hyper-parameters for forecasting missing signals in traumatic brain injury patients, and predicting mortality in intensive care unit patients. Third, we train switching-state autoregressive models (SSAMs) to model the underlying states that emit patient vital signs over time. We evaluate the time-specific latent state distributions as features to predict vasopressor onset and weaning in intensive care unit patients. Finally, we use statistical and symbolic features extracted from wearable ambulatory accelerometers (ACC) mounted to the neck to classify patient pathology, and stratify patients' risk of voice misuse. We evaluate the utility of both statistically generated features and symbolic representations of glottal pulses towards patient classification.en_US
dc.description.statementofresponsibilityby Marzyeh Ghassemi.en_US
dc.format.extent114 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleRepresentation learning in multi-dimensional clinical timeseries for risk and event predictionen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1012611423en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record