Show simple item record

dc.contributor.advisorBrian L. Wardle.en_US
dc.contributor.authorCornwell, Hayden Ken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2017-12-05T19:11:54Z
dc.date.available2017-12-05T19:11:54Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112417
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 100-109).en_US
dc.description.abstractThe relatively high mass-specific strength and stiffness of carbon fibers (CFs) has established CF reinforced plastics (CFRPs) as the benchmark material for next-generation aerospace structures. While CFRPs with radially-grown aligned carbon nanotubes (CNTs), termed fuzzy fiber reinforced plastics (FFRPs), have exhibited enhanced inter- and intralaminar mechanical properties on model FRP systems, these results have not been replicated for aerospace-grade CFRP due to challenges in manufacturing. This thesis reports a scaled (weave- vs. tow-level) manufacturing method of fuzzy woven CFRPs designed to yield dense and aligned CNT coverage on the fibers, and retain the fiber tensile and interface properties. These challenges were explored through mechanical testing, in addition to numerical reactive computational fluid dynamics (CFD) CNT growth models. Single fiber tensile tests for fuzzy fibers from aerospace-grade CF weaves showed no reduction in tensile strength compared to baseline (as received) fibers. Continuously monitored single fiber composite fragmentation testing revealed a 34% decrease in fiber-matrix interfacial shear strength (IFSS) for sized (polymer coating on fibers) fuzzy fibers, attributed to thermally induced sizing transformations during CNT growth, whereas the fuzzy de-sized fibers exhibited no reduction in IFSS. The CFD model demonstrated gas depletion trends correlated to the areas of substandard growth and a high sensitivity to the surface-to-volume ratio of the porous woven substrate. Retained CF properties supports this facile, scaled manufacturing method's ability to disperse CNTs uniformly on CF weaves to create a laminate-level fuzzy CFRP towards enhanced mechanical and multifunctional properties. With continued CNT growth modeling efforts, further scaling of this fuzzy CFRP architecture could be integrated into commercial manufacturing processes.en_US
dc.description.statementofresponsibilityby Hayden K. Cornwell.en_US
dc.format.extent109 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleTensile and interfacial properties of radially aligned CNT grown carbon fibersen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1008569976en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record