Show simple item record

dc.contributor.advisorAlvar Saenz-Otero and David W. Miller.en_US
dc.contributor.authorFunke, Zachary K. (Zachary Kahl)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2017-12-05T19:11:59Z
dc.date.available2017-12-05T19:11:59Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112419
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 211-214).en_US
dc.description.abstractSatellites at geosynchronous orbital altitudes are highly valuable for national defense, but are also difficult to access and monitor. Uncrewed inspection spacecraft could supervise various essential defense platforms and deter covert rendezvous by adversaries with malicious intent. 'Neighborhood watch' satellites tasked with this situational awareness mission should be designed and operated in such a way as to maximize their lifespan and efficacy. Motivated by this requirement, this thesis explores the prolonged medium- to close-range spacecraft proximity operations problem from the perspective of continuous optimal trajectory control. A numerical optimization framework is presented for developing and analyzing fuel-, energy-, and time-optimal trajectories with multiple phases using Gauss pseudospectral collocation software. Emphasis is placed on energy efficiency during inspection, for which accurate dynamical models play a critical role in formationkeeping fuel consumption. Various scenarios are analyzed for minimum-energy solutions, such as tactical phasing and insertion into periodic trajectories, avoidance of 'no-fly' zones, inclusion of coupling attitude dynamics, and operations with highly-eccentric targets. This thesis focuses primarily on proximity operations carried out in geosynchronous orbital regimes and neglects orbit perturbations, instead determining the pure cost of linearizing Keplerian gravity using the Hill-Clohessy-Wiltshire model. Error in relative position, angular rate of circumnavigation, and fuel use to enforce linearized periodic trajectories are characterized. It was determined that proximity operations utilizing low-thrust high-specific-impulse solar electric propulsion are well-suited to minimum-energy trajectory optimization with this method. While the contributed analysis tool is not suitable for on-board optimal trajectory generation, it provides a framework to perform useful pre-mission analyses.en_US
dc.description.statementofresponsibilityby Zachary K. Funke.en_US
dc.format.extent214 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleLong-duration proximity operations flexibly optimized for efficient inspection and servicing using free-orbit dynamicsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1008570621en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record