Show simple item record

dc.contributor.advisorOlivier de Weck and Afreen Siddiqi.en_US
dc.contributor.authorGraham, John Kyleen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2017-12-05T19:13:56Z
dc.date.available2017-12-05T19:13:56Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112463
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 187-189).en_US
dc.description.abstractRecent studies have shown that distributed spacecraft missions, or constellations, can offer similar performance to monolithic satellite missions for lower cost and less risk. Additionally, recent developments in and implementation of electric propulsion (EP) technologies further the case for the use of constellations because they enable operational possibilities otherwise unavailable to satellites with chemical thrusters by reducing costly fuel requirements. Through more efficient fuel usage, EP allows for wide-scale rendezvous of satellites for refueling/maintenance as well as constellation reshuffling and orbit raising to recover system performance after losing a satellite. With these constellation-wide maneuvers at an operator's disposal, distributed spacecraft missions will be able to operate longer and will have more flexibility to adapt and respond to malfunctions in the constellation. This thesis analyzes the performance gains of distributed spacecraft missions that utilize EP by analyzing satellite constellations at both microscopic and macroscopic levels - first, by understanding how payloads of different types, when combined with higher power requirements for EP systems, impact and influence an individual satellite's design and mass, and then exploring how, within a 2D orbital plane, this individual satellite can use its greater endurance to move within the network and influence entire constellation performance. Together, these different levels of understanding provide the necessary framework to effectively design and analyze robust and effective constellations, regardless of mission type. A case study of the OneWeb global internet mission demonstrates that use of currently available electric propulsion technologies can save up to 3000 kg per plane over chemical thrusters and can completely eliminate the need for spare satellites for lifetime failure rates of up to 10%.en_US
dc.description.statementofresponsibilityby John Kyle Graham.en_US
dc.format.extent189 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA payload-centric approach towards resilient and robust electric-propulsion enabled constellation mission designen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1011035309en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record