Show simple item record

dc.contributor.advisorWarren W. Hoburg.en_US
dc.contributor.authorKarcher, Cody Jacoben_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2017-12-05T19:14:02Z
dc.date.available2017-12-05T19:14:02Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112465
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 79-82).en_US
dc.description.abstractRecently, geometric programming has been proposed as a powerful tool for enhancing aircraft conceptual design. While geometric programming has shown promise in early studies, current formulations preclude the designer from using black box analysis codes which are prolific in the aircraft design community. Previous work has shown the ability to fit data from these black box codes prior to the optimization run, however, this is often a time consuming and computationally expensive process that does not scale well to higher dimensional black boxes. Based upon existing iterative optimization methods, we propose a heuristic for including black box analysis codes in a geometric programming framework by utilizing sequential geometric programming (SGP). We demonstrate a heuristic SGP method and apply it to a solar powered aircraft using a black boxed GP compatible profile drag function. Using this heuristic algorithm, we achieve less than a 1% difference in the objective function between a direct implementation of the constraint and a black box implementation of the constraint.en_US
dc.description.statementofresponsibilityby Cody Jacob Karcher.en_US
dc.format.extent112 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleA heuristic for including black box analysis tools into a geometric programming formulationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc1011035717en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record