Show simple item record

dc.contributor.advisorR. John Hansman.en_US
dc.contributor.authorSalgueiro Rodrigues Filho, Sandroen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2017-12-05T19:14:36Z
dc.date.available2017-12-05T19:14:36Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112478
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 60).en_US
dc.description.abstractRequired Navigation Performance (RNP) instrument procedures guarantee high levels of navigation precision through highly accurate navigation sources (e.g. GPS) and real-time monitoring of position estimation accuracy. In recent years, the Federal Aviation Administration (FAA) has developed and published public RNP approach procedures at airports across the country. These RNP procedures offer unique capabilities such as curved segments (radius-to-fix, or RF legs), narrow containment areas, and constant descent profiles that are not seen combined in other categories of instrument approaches. Because of these capabilities, RNP approaches are regarded as highly flexible procedures that can be designed to meet specific stakeholder requirements (e.g. lower minimums in mountainous areas, minimizing fuel bum during approach, avoiding flight over populated areas for noise abatement, etc.) at the airport level. Among the various proposed benefits of RNP approaches, this study analyzed potential safety benefits related to improvements in approach stability. In total, 11,062 individual approaches at four airports were analyzed using radar (ASDE-X) data, of which 364 (3.29%) were identified as RNP procedures. Of all approaches analyzed, two non-RNP cases were identified as unsafe, while there were no unsafe RNP cases. However, due to the relatively low number of RNP approaches observed, no statistically significant evidence of improved stability on RNP approaches was found. Given the low utilization of RNP approach procedures found from radar data, further work was done to identify barriers to operational use of these procedures and to investigate strategies to accelerate the adoption of RNP across the National Airspace System (NAS). Potential factors driving the low utilization of RNP procedures were found to be the low levels of equipage and operational approval among air carriers, and difficulties in air traffic management stemming from mixed equipage operations.en_US
dc.description.statementofresponsibilityby Sandro Salgueiro Rodrigues Filho.en_US
dc.format.extent68 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleAnalysis of approach stability and challenges in operational implementation of RNP approach proceduresen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.identifier.oclc1011356844en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record