Show simple item record

dc.contributor.advisorAmos Winter.en_US
dc.contributor.authorSwaminathan, Krithikaen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2017-12-05T19:16:55Z
dc.date.available2017-12-05T19:16:55Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112528
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 38-39).en_US
dc.description.abstractThe need for effective prostheses is prevalent worldwide, and is especially dire in developing countries and low-resource settings. The MIT GEAR Lab is addressing this gap through the ATKnee, a low-cost, passive prosthetic knee that employs the use of spring and damper components to replicate the knee torque of the able-bodied human knee. In this study, we build upon prior work to optimize the components used in the ATKnee by accounting for results from field-testing. We first develop an inverse dynamics model to confirm understanding of previous work. We then use a genetic optimization algorithm to optimize parameters across different walking speeds and various spring-damper configurations. The best fit, as measured by the highest R2 value, is obtained when a viscous damper is active during the first dissipative phase (b*11 ), a friction damper is active during the second dissipative phase (b*/20 ), and an additional friction damper is active throughout both phases (b*/0). We make the suggestion that b*/0 = 0.084, b*/11 = 0.008, b*/0 = 0.183, gives the most optimal passive system knee torque with the engagement and disengagement timings teng = 51.3%, tdis1 = 64.2% for the first damper, and teng2 = 86.1%, tdis2 = 95.2% for the second damper. We find that the parameters are robust to subject body mass, but show a positive correlation with walking speed. We conclude that while we are able to suggest an optimized parameter set that includes higher order dampers, it will be important to investigate the effects of cadence, as well as to study the joint torques at the hip, which is further from the foot.en_US
dc.description.statementofresponsibilityby Krithika Swaminathan.en_US
dc.format.extent39 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAnalysis and optimization of passive knee prosthetic design parameters over varying cadencesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc1012939803en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record