MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of housing for stove use monitors (SUMs) to measure adoption/

Author(s)
Waller, Erica (Erica M.)
Thumbnail
DownloadFull printable version (4.686Mb)
Alternative title
Design of housing for SUMs to measure adoption
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Daniel Frey.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Billions of people around the globe rely on solid fuels such as wood or charcoal to heat their homes and cook their meals which negatively impacts health as well as the environment. Improved cook stoves negate these problems but are often not used over time. Stove use monitors (SUMs) are attached to improved cook stoves to track adoption rates. Three basic designs were generated of a housing for the SUM. They were analyzed by considering material choices, manufacturing options, and customer needs. Thermal images were taken of an improved cook stove in use to measure temperatures at key locations around the stove. It was found that the sides and handles of the stove attain a maximum temperature of above 150 °C (300 °F), and the feet and base of the stove below that. It was determined the best course of action is to design a housing for the base or feet of the stoves and use resin casting and later injection molding as production needs increase.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 27-28).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/112534
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.