| dc.contributor.advisor | loannis V. Yannas. | en_US |
| dc.contributor.author | De Maillé, Austin (Austin C.) | en_US |
| dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
| dc.date.accessioned | 2017-12-05T19:19:26Z | |
| dc.date.available | 2017-12-05T19:19:26Z | |
| dc.date.copyright | 2017 | en_US |
| dc.date.issued | 2017 | en_US |
| dc.identifier.uri | http://hdl.handle.net/1721.1/112586 | |
| dc.description | Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017. | en_US |
| dc.description | Cataloged from PDF version of thesis. | en_US |
| dc.description | Includes bibliographical references (pages 32-33). | en_US |
| dc.description.abstract | This thesis presents a Finite Element Analysis investigation on the properties of skin that affect skin wound closure and scar formation. It begins with an in depth literature review of mammalian studies and computer simulations of skin wounds, providing a better understanding of the mechanics of skin during wound healing. Details are then provided into the construction, simulation, and data processing of a finite element model in which wound shape, wound contraction forces, and subcutaneous tissue resistance are all varied. Two major conclusions can be drawn from these simulations. (1) When comparing rectangular, square, and circular wounds of the same initial wound size, rectangular wounds close fastest and circle wounds close slowest. (2) Subcutaneous tissue appears to be physically connected to the underlying dermis. Increased resistance/stiffness forces by subcutaneous tissue lead to less tissue contraction, however the relationship between skin deformation and subcutaneous resistance has not been determined. It appears that as skin displacement increases, subcutaneous tissue stiffness exponentially increases. Additional simulations must be completed to confirm this theory. Other factors affecting skin contraction, including skin thickness and Langer lines, have yet to be tested and should be pursued in future studies. | en_US |
| dc.description.statementofresponsibility | by Austin de Maillé. | en_US |
| dc.format.extent | 33 pages | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Massachusetts Institute of Technology | en_US |
| dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
| dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
| dc.subject | Mechanical Engineering. | en_US |
| dc.title | Finite Element Analysis on the skin properties affecting wound closure | en_US |
| dc.type | Thesis | en_US |
| dc.description.degree | S.B. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
| dc.identifier.oclc | 1013461194 | en_US |