dc.contributor.author | Dyck, Dirk van | |
dc.contributor.author | Agarwal, Akshay | |
dc.contributor.author | Kim, Chungsoo | |
dc.contributor.author | Hobbs, Richard | |
dc.contributor.author | Berggren, Karl K | |
dc.date.accessioned | 2017-12-12T15:48:45Z | |
dc.date.available | 2017-12-12T15:48:45Z | |
dc.date.issued | 2017-05 | |
dc.date.submitted | 2016-12 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/112709 | |
dc.description.abstract | Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 μm. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron microscope grid by gallium focused-ion-beam milling. Using this interferometer, we obtain interference fringes in a Mach-Zehnder geometry in an unmodified 200 kV transmission electron microscope. The fringes have a period of 0.32 nm, which corresponds to the [111] lattice planes of silicon, and a maximum contrast of 15%. We use convergent-beam electron diffraction to quantify grating alignment and coherence. This design can potentially be scaled to millimeter-scale, and used in electron holography. It could also be applied to perform fundamental physics experiments, such as interaction-free measurement with electrons. | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/s41598-017-01466-0 | en_US |
dc.rights | Creative Commons Attribution 4.0 International | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Nature | en_US |
dc.title | A nanofabricated, monolithic, path-separated electron interferometer | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Agarwal, Akshay et al. "A nanofabricated, monolithic, path-separated electron interferometer." Scientific Reports 7, 1 (May 2017): 1677 © 2017 The Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Agarwal, Akshay | |
dc.contributor.mitauthor | Kim, Chungsoo | |
dc.contributor.mitauthor | Hobbs, Richard | |
dc.contributor.mitauthor | Berggren, Karl K | |
dc.relation.journal | Scientific Reports | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2017-12-11T17:11:57Z | |
dspace.orderedauthors | Agarwal, Akshay; Kim, Chung-Soo; Hobbs, Richard; Dyck, Dirk van; Berggren, Karl K. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5944-3346 | |
dc.identifier.orcid | https://orcid.org/0000-0002-8547-0639 | |
dc.identifier.orcid | https://orcid.org/0000-0003-0855-3710 | |
dc.identifier.orcid | https://orcid.org/0000-0001-7453-9031 | |
mit.license | PUBLISHER_CC | en_US |