dc.contributor.advisor | Stelios Sidiroglou-Douskos and Martin Rinard. | en_US |
dc.contributor.author | Chilingirian, Berj Krikor | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2017-12-20T17:24:44Z | |
dc.date.available | 2017-12-20T17:24:44Z | |
dc.date.copyright | 2017 | en_US |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/112837 | |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 85-90). | en_US |
dc.description.abstract | Modern systems measure the software loaded at boot-time to ensure the machine starts in a trusted state. Such measurements, however, do not include any information about the underlying hardware of the machine. Recent DRAM-based attacks and the growing complexity of the supply chain attest to the importance of measuring hardware at boot. In this thesis, we propose a technique for designing measurement schemes for hardware components. We then apply this technique to designing and implementing a hardware measurement scheme for DRAM on a real system without hardware modifications. Finally, we evaluate our DRAM hardware measurement scheme and demonstrate that it achieves 89% accuracy in mapping a DRAM measurement to the manufacturing process from which that DRAM was produced. | en_US |
dc.description.statementofresponsibility | by Berj Krikor Chilingirian. | en_US |
dc.format.extent | 90 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Hashing hardware : identifying hardware during boot-time system verification | en_US |
dc.title.alternative | Identifying hardware during boot-time system verification | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 1015201358 | en_US |