MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topics in linear spectral statistics of random matrices

Author(s)
Lodhia, Asad
Thumbnail
DownloadFull printable version (4.687Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Alice Guionnet.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The behavior of the spectrum of a large random matrix is a topic of great interest in probability theory and statistics. At a global level, the limiting spectra of certain random matrix models have been known for some time. For example, the limiting spectral measure of a Wigner matrix is a semicircle law and the limiting spectral measure of a sample covariance matrix under certain conditions is a Marc̆enko-Pastur law. The local behavior of eigenvalues for specific random matrix ensembles (GUE and GOE) have been known for some time as well and until recently, were conjectured to be universal. There have been many recents breakthroughs in the universality of this local behavior of eigenvalues for Wigner Matrices. Furthermore, these universality results laws have been proven for other probabilistic models of particle systems, such as Beta Ensembles. In this thesis we investigate the fluctuations of linear statistics of eigenvalues of Wigner Matrices and Beta Ensembles in regimes intermediate to the global regime and the microscopic regime (called the mesoscopic regime). We verify that these fluctuations are Gaussian and derive the covariance for a range of test functions and scales. On a separate line of investigation, we study the global spectral behavior of a random matrix arising in statistics, called Kendall's Tau and verify that it satisfies an analogue of the Marc̆enko-Pastur Law.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 78-83).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/112898
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.