MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Printing the invisible : bridging the gap between data and matter through voxel-based 3D printing

Author(s)
Kolb, Dominik.
Thumbnail
Download1015239954-MIT.pdf (11.84Mb)
Alternative title
Bridging the gap between data and matter through voxel-based 3D printing
Other Contributors
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Advisor
Neri Oxman.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Scientific visualizations are central to the representation and communication of data in ways that are at once efficient and effective. Numerous data types have established unique formats of representation. In the context of three-dimensional (3D) data sets, such information is often presented as a 3D rendering, a video or an interactive application. The purpose of such visualization is often to emulate the physical, three-dimensional world; however, they remain inherently virtual. Recent advancements in additive manufacturing are making it possible to 'physicalize' three-dimensional data through 3D printing. Still, most 3D printing methods are geared towards single material printing workflows devoid of the ability to physically visualize volumetric data with high fidelity matching their virtual origin. As a result, information and detail are compromised. To overcome this limitation, I propose, design and evaluate a workflow to 'physicalize' such data through multi-material 3D printing. The thesis focuses on methods for voxel-based additive fabrication at high spatial resolution of three-dimensional data sets including - but not limited to point clouds, volumes, lines and graphs, and image stacks. This is achieved while maintaining the original data with high fidelity. I demonstrate that various data sets - often visualized through rasterization on screen - can be translated into physical, materially heterogeneous objects, by means of multi-material, voxel-based 3D printing. This workflow - its related tools, techniques and technologies contained herein - enables bridging the gap between digital information presentation and physical material composition. Developed methods are experimentally tested with various data across scales, disciplines and problem contexts - including application domains such as biomedicine, physics and archeology.
Description
Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2017
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 74-79).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/112911
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Program in Media Arts and Sciences

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.