MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BeatDB v3 : a framework for the creation of predictive datasets from physiological signals

Author(s)
Rivera, Steven Anthony
Thumbnail
DownloadFull printable version (683.4Kb)
Alternative title
BeatDB version three : a framework for the creation of predictive datasets from physiological signals
Framework for the creation of predictive datasets from physiological signals
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Una-May O'Reilly and Erik Hemberg.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
BeatDB is a framework for fast processing and analysis of physiological data, such as arterial blood pressure (ABP) or electrocardiograms (ECG). BeatDB takes such data as input and processes it for machine learning analytics in multiple stages. It offers both beat and onset detection, feature extraction for beats and groups of beats over one or more signal channels and over the time domain, and an extraction step focused on finding condition windows and aggregate features within them. BeatDB has gone through multiple iterations, with its initial version running as a collection of single-use MATLAB and Python scripts run on VM instances in Open- Stack and its second version (known as PhysioMiner) acting as a cohesive and modular cloud system on Amazon Web Services in Java. The goal of this project is primarily to modify BeatDB to support multi-channel waveform data like EEG and accelerometer data and to make the project more flexible to modification by researchers. Major software development tasks included rewriting condition detection to find windows in valid beat groups only, refactoring and writing new code to extract features and prepare training data for multi-channel signals, and fully redesigning and reimplementing BeatDB within Python, focusing on optimization and simplicity based on probable use cases of BeatDB. BeatDB v3 has become more accurate in the datasets it generates, usable for both developer and non-developer users, and efficient in both performance and design than previous iterations, achieving an average AUROC increase of over 4% when comparing specific iterations.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 101-104).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113114
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.