Show simple item record

dc.contributor.advisorDavid J. Perreault.en_US
dc.contributor.authorRak-amnouykit, Thipoken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-01-12T20:56:57Z
dc.date.available2018-01-12T20:56:57Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113115
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 141-142).en_US
dc.description.abstractA solar-powered irrigation system has been developed to address the lack of affordable irrigation solution for the marginal farmers in India. An MIT spinout, Khethworks, has designed an efficient water pump with low power rating, and created a low-cost irrigation system with the pump, a photovoltaic panel, and a battery. This thesis analyzes the electrical properties of such a configuration, and determines whether implementing maximum power point tracking (MPPT) can improve the system's performance. This is accomplished through modeling and conducting a system-level simulation. The amount of electrical energy generated by the photovoltaic panel and the amount of water delivered by the pump are chosen as the key measures of the system's performance. The simulation result indicates that implementing MPPT with the current version of the Khethworks irrigation system - using lower-power panels of the 48 or 60 cell variety - would not significantly increase its performance. However, an irrigation system with higher power rating (e.g., a 72-cell panel, such as with a 320 W rating) would significantly benefit from the MPPT, and the MPPT's benefits are consistent over the variation in location and time. Based on the finding, we identify circumstances under which each of the direct load line and the maximum power point tracking approaches are preferable, and recommend an action plan to Khethworks accordingly.en_US
dc.description.statementofresponsibilityby Thipok Rak-amnouykit.en_US
dc.format.extent142 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleImproving electrical performance of reliable solar-powered irrigation systemen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1016449832en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record