MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How should compilers represent fork-join parallelism?

Author(s)
Moses, William S. (William Steven)
Thumbnail
DownloadFull printable version (363.3Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Charles E. Leiserson and Tao B. Schardl.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis explores how fork-join parallelism, as supported by concurrency platforms such as Cilk and OpenMP, can be embedded into a compiler's intermediate representation (IR). Mainstream compilers typically treat parallel linguistic constructs as syntactic sugar for function calls into a parallel runtime. These calls prevent the compiler from performing optimizations across parallel control constructs. Remedying this situation is generally thought to require an extensive reworking of compiler analyses and code transformations to handle parallel semantics. Tapir is a compiler IR that represents logically parallel tasks asymmetrically in the program's control flow graph. Tapir allows the compiler to optimize across parallel control constructs with only minor changes to its existing analyses and code transformations. To prototype Tapir in the LLVM compiler, for example, the Tapir team added or modified about 6000 lines of LLVM's 4-million-line codebase. Tapir enables LLVM's existing compiler optimizations for serial code -- including loop-invariant-code motion, commonsubexpression elimination, and tail-recursion elimination -- to work with parallel control constructs such as spawning and parallel loops. Tapir also supports parallel optimizations such as loop scheduling. This research reported in this thesis represents joint work with Tao B. Schardl and Charles E. Leiserson.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 49-53).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113124
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.