MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applications of twitter emotion detection for stock market prediction

Author(s)
Liu, Clare H
Thumbnail
DownloadFull printable version (1.831Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Andrew W. Lo.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Currently, most applications of sentiment analysis focus on detecting sentiment polarity, which is whether a piece of text can be classified as positive or negative. However, it can sometimes be important to be able to distinguish between distinct emotions as opposed to just the polarity. In this thesis, we use a supervised learning approach to develop an emotion classifier for the six Ekman emotions: joy, fear, sadness, disgust, surprise, and anger. Then we apply our emotion classifier to tweets from the 2016 presidential election and financial tweets labeled with Twitter cashtags and evaluate the effectiveness of using finer-grained emotion categorization to predict future stock market performance.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 71-76).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113131
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.