Inferring final plans : expanding on a generative and logic-based approach
Author(s)
Johnson, Brittney E
DownloadFull printable version (1.891Mb)
Alternative title
Expanding on a generative and logic-based approach
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Julie A. Shah.
Terms of use
Metadata
Show full item recordAbstract
When humans work together to form a plan, they often make mistakes: they misspeak, say things out of order, and negate things they had previously said. We aim to read human team planning conversations and extract the final agreed-upon plan so that a robotic agent may assist in design or execution. Previous work shows that a generative model with logic-based priors is effective when the plan being formed is relatively simple. We present an algorithm that expands on the model by incorporating dialogue acts, which give an indication of how proposed actions are said. We compare our model's performance to humans on the same task. We also validate the model on a toy problem, achieving the desired output 8 times out of 10 (compared to a baseline of 3/10), and run the baseline and our expanded model on a more complex input dialogue. To the best of our knowledge, this is this first work that incorporates dialogue acts into a generative model to perform plan inference.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 91-93).
Date issued
2017Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.