MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning digits via joint audio-visual representations

Author(s)
Kashyap, Karan
Thumbnail
DownloadFull printable version (2.275Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James Glass.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Our goal is to explore models for language learning in the manner that humans learn languages as children. Namely, children do not have intermediary text transcriptions in correlating visual and audio inputs from the environment; rather, they directly make connections between what they see and what they hear, sometimes even across languages! In this thesis, we present weakly-supervised models for learning representations of numerical digits between two modalities: speech and images. We experiment with architectures of convolutional neural networks taking in spoken utterances of numerical digits and images of handwritten digits as inputs. In nearly all cases we randomly initialize network weights (without pre-training) and evaluate the model's ability to return a matching image for a spoken input or to identify the number of overlapping digits between an utterance and an image. We also provide some visuals as evidence that our models are truly learning correspondences between the two modalities.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 59-60).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113143
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.