MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Airline scheduling and air traffic control : incorporating uncertainty and passenger and airline preferences

Author(s)
Yan, Chiwei
Thumbnail
DownloadFull printable version (2.263Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Cynthia Barnhart and Vikrant Vaze.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The global airline industry is a multi-stakeholder stochastic system whose performance is the outcome of complex interactions between its multiple decisions-makers under a high degree of uncertainty. Inadequate understanding of uncertainty and stakeholder preferences leads to adverse effects including airline losses, delays and disruptions. This thesis studies a set of topics in airline scheduling and air traffic control to mitigate some of these issues. The first part of the thesis focuses on building aircraft schedules that are robust against delays. We develop a robust optimization approach for building aircraft routes. The goal is to mitigate propagated delays, which are defined as the delays caused by the late arrival of aircraft from earlier flights and are the top cause of flight delays in the United States air transportation system. The key feature of our model is that it allows us to handle correlation in flight delays explicitly that existing approaches cannot handle efficiently. We propose an efficient decomposition algorithm to solve the robust model and present the results of numerical experiments, based on data from a major U.S. airline, to demonstrate its effectiveness compared to existing approaches. The second part of the thesis focuses on improving the planning of air traffic flow management (ATFM) programs by incorporating airline preferences into the decision-making process. We develop a voting mechanism to gather airline preferences of candidate ATFM designs. A unique feature of this mechanism is that the candidates are drawn from a domain with infinite cardinality described by polyhedral sets. We conduct a detailed case study based on actual schedule data at San Francisco International Airport to assess its benefits in planning of ground delay programs. Finally, we study an integrated airline network planning model which incorporates passenger choice behavior. We model passenger demand using a multinomial logit choice model and integrate it into a fleet assignment and schedule design model. To tackle the formidable computational challenge associated with solving this model, we develop a reformulation, decomposition and approximation scheme. Using data from a major U.S. airline, we prove that the proposed approach brings significant profit improvements over existing methods.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 193-201).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113435
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.