Field observations and numerical model simulations of a migrating inlet system
Author(s)
Hopkins, Julia A.
Download1019903796-MIT.pdf (16.94Mb)
Other Contributors
Joint Program in Oceanography/Applied Ocean Science and Engineering.
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Woods Hole Oceanographic Institution.
Advisor
Steve Elgar.
Terms of use
Metadata
Show full item recordAbstract
Waves, currents, and bathymetric change observed along 11 km of the southern shoreline of Martha's Vineyard include storm events, strong tidal flows (> 2 m/s), and an inlet migrating 2.5 km in ~7 years. A field-verified Delft3D numerical model developed for this system is used to examine the hydrodynamics in the nearshore and their effect on the migrating inlet. An initial numerical experiment showed that the observed 700 tidal modulation of wave direction in the nearshore was owing to interactions with tidal currents, and not to depth-induced refraction as waves propagated over complex shallow bathymetry. A second set of simulations focused on the separation of tidal currents from the southeast corner of Martha's Vineyard, showing the positive correlation between flow separation and sediment transport around a curved shoreline. Observations of waves, currents, and bathymetric change during hurricanes were reproduced in a third numerical experiment examining the competition between storm waves, which enhance inlet migration, and strong tidal currents, which scour the inlet and reduce migration rates. The combined field observations and simulations examined here demonstrate the importance of wave and tidal current forcings on morphological evolution at timescales of days to months.
Description
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2017 Cataloged from PDF version of thesis. Includes bibliographical references.
Date issued
2017Department
Joint Program in Oceanography/Applied Ocean Science and Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Woods Hole Oceanographic InstitutionPublisher
Massachusetts Institute of Technology
Keywords
Joint Program in Oceanography/Applied Ocean Science and Engineering., Civil and Environmental Engineering., Woods Hole Oceanographic Institution.