MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An investigation of sparse tensor formats for tensor libraries

Author(s)
Tew, Parker Allen
Thumbnail
DownloadFull printable version (3.909Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Saman Amarasinghe.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Tensors provide a generalized structure to store arbitrary indexable data, which is applicable in fields such as chemometrics, physics simulations, signal processing and lies at the heart of machine learning. Many naturally occurring tensors are considered sparse as they contain mostly zero values. As with sparse matrices, various techniques can be employed to more efficiently store and compute on these sparse tensors. This work explores several sparse tensor formats while ultimately evaluating two implementations; one based on explicitly storing coordinates and one that compresses these coordinates. The two formats, Coordinate and CSF2, were evaluated by comparing their execution time of tensor-matrix products and the MTTKRP operation on several datasets. We find that the Coordinate format is superior for uniformly distributed sparse tensors or when used in computation that emits a sparse tensor via a mode dependent operation. In all other considered cases for large sparse tensors, the storage savings of the compressed format provide the best results.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 52-53).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/113496
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.