MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive analytics of active learning based education

Author(s)
Bheda, Anuj
Thumbnail
DownloadFull printable version (11.63Mb)
Other Contributors
System Design and Management Program.
Advisor
Abel Sanchez.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Learning Analytics (LA) is defined as the collection, measurement, and analysis of data related to student performance such that the feedback from the analytical insights can be used to optimize student learning and improve student outcomes. Blended Learning (BL) is a teaching paradigm that involves a mix of face-to-face interactions in a classroom based setting along with instructional material distributed through an online medium. In this thesis, we explore the role of a blended learning model coupled with learning analytics in an introductory programming class for non-computer science students. We identify the features that were necessary for setting up the infrastructure of the course. These include discussions on preparing the course content materials and producing assignment exercises. We then talk about the various dynamics that were in play during the duration of the class by describing the interplay between watching video tutorials, listening to mini-lectures and performing active learning exercises that are backed by modern software development practices. Lastly, we spend time analyzing the data collected to create a predictive model that can measure student performance by defining the specifications of a machine learning algorithm along with many of its adjustable parameters. The system thus created will allow instructors to identify possible outliers in teaching efficacy, the feedback from which could then be used to tune course material for the betterment of student outcomes.
Description
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 113-115).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113509
Department
Massachusetts Institute of Technology. Engineering and Management Program; System Design and Management Program.; Massachusetts Institute of Technology. Integrated Design and Management Program
Publisher
Massachusetts Institute of Technology
Keywords
Engineering and Management Program., Integrated Design and Management Program., System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.