Show simple item record

dc.contributor.advisorNancy Leveson.en_US
dc.contributor.authorYamaguchi, Shinichi, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherSystem Design and Management Program.en_US
dc.date.accessioned2018-02-08T16:27:57Z
dc.date.available2018-02-08T16:27:57Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113531
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractIn recent years, the technology in the medical industry has been advancing to provide safe and systematic medical care. However, the system of medical technologies and treatments has become more complicated year by year, which increases the risks of defects in the system. For example, the U.S. Food and Drug Administration's Center for Devices and Radiologic Health has reported recalls of medical devices that may lead to serious injury or death because of malfunctions. To reduce the risks, developers and makers of medical devices have been applying a wide spectrum of methodologies to improve quality. However, the growing complexity of medical systems, including devices, medical staff, organizations, and regulators, causes problems that the current safety engineering techniques are inadequate to prevent, which can result in tragic medical accidents. Therefore, it is important to apply new approaches to ensure the system safety of medical devices. This thesis compares Failure Mode and Effect Analysis (FMEA) and System-Theoretic Process Analysis (STPA). STPA is one of the analysis techniques based on the systems-theoretic approach of system safety (STAMP) to identify what should be done to establish the design safety of medical systems. Presently, FMEA, as a risk management technique, is widely used as a major methodology to ensure the safety of medical devices; therefore, it is worth comparing with STPA as a fundamental methodology. This thesis identifies the basic design of tomographic treatment and applies STPA to the TomoTherapy system. This tomographic treatment system treats hard-to-reach tumors and reduces radiation exposure to nearby healthy tissues. To ensure the quality of TomoTherapy, STPA is an effective means to conduct hazard analyses because STPA holistically analyzes the safety of this system, considering both human and mechanical factors. After that, I compare the results of STPA and FMEA. STPA analysis found 99 unsafe control actions, 10 causal scenarios, and 29 possible requirements, in contrast with FMEA, which identified a total of 74 failure modes. The potential causes of failure in the results of FMEA include only human factors. However, STPA analyzes the system from various viewpoints, such as the physical system, human factors, organization, management, and so on. Thus, it can be seen that STPA can be used as a technique to identify potential causes as causal scenarios more comprehensively than FMEA.en_US
dc.description.statementofresponsibilityby Shinichi Yamaguchi.en_US
dc.format.extent141 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectIntegrated Design and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.titleA system safety analysis of tomographic treatmenten_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentSystem Design and Management Program.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Integrated Design and Management Programen_US
dc.identifier.oclc1020173189en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record