MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Developing biophysical markers for anemic disorders through advancing interferometric microscopy

Author(s)
Hosseini, Poorya
Thumbnail
DownloadFull printable version (14.11Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Peter T.C. So.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Erythrocytes, better known as red blood cells, among various functions, are mainly tasked with the oxygen transport in vertebrates through blood circulation. Red blood cells are packed with the hemoglobin, an oxygen-binding molecule, and have unique biophysical properties that are critical in enabling the oxygen delivery and optimization of the blood flow in large vessels and capillaries. These properties such as cellular deformability, biconcave shape, and proper hemoglobin function are compromised in a range of diseases known as anemic disorders. Quantifying these alterations provides a tool for studying pathobiology of these diseases and guides the search for the cure or novel treatments. Interferometric microscopy in various forms has been suggested as a tool for measuring some of these biophysical properties. However, current interferometric techniques suffer from one or a combination of the following shortcomings: (1) precision of the biophysical measurements is limited due to limits on the measurement sensitivity, (2) absence of a practical solution for clinical settings to conduct high-throughput and comprehensive biophysical measurements on a cellular basis, (3) ignoring cell-to-cell variability in molecular specific information such as cellular hemoglobin concertation in conventional interferometric measurements, In several steps, we have made advancements to the state-of-the-art technology in each of these areas. We have particularly shown the capabilities of our platforms in studying a genetic anemic disorder known as sickle cell disease (SCD). Through these studies and in collaboration with our clinical partners, we have investigated the treatment effects on SCD patients, and have introduced novel biomarkers relevant in quantifying the pathophysiology of the anemic disorders. These technology developments open new horizons in which interferometric microscopy serves as a powerful platform for studying anemic disorders and potentially
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 89-98).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113545
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.